Künstliche Intelligenz auf der EMO Hannover
von Angelika Albrecht
Wenn sich Maschinen vernetzen und ihr Wissen austauschen, werden sie immer schlauer. Künstliche Intelligenz macht es möglich. In der industriellen Produktion spielt maschinelles Lernen eine entscheidende Rolle, wenn es um Effizienzsteigerung geht. Eingesetzt werden dabei auch neuronale Netze aus dem Bereich des Deep Learnings. Auf der EMO Hannover 2023 vom 18. bis 23. September präsentieren zahlreiche Unternehmen Anlagen, Systeme und Komponenten, mit denen sich die Fertigung durch den Einsatz von datenbasierten Modellen optimieren lässt.
Können sich Produktionsmaschinen aus eigener Kraft optimieren? Können sie aus ihren Fehlern lernen? Und können sie sich sogar Know-how von anderen Maschinen aneignen? Wenn lernende Produktionsmaschinen clever arbeiten, dann führt das zu höherer Produktivität, geringeren Kosten, verbesserter Qualität und geringeren Ausfallzeiten.
„Wir haben lange an der Optimierung unserer Prozesse in der Produktionstechnik gearbeitet und hier einen Wettbewerbsvorteil erzielt, den wir nun auch in der digitalen Transformation der industriellen Produktion erreichen sollten“, erklärt Markus Spiekermann, Abteilungsleiter Datenwirtschaft beim Fraunhofer-Institut für Software- und Systemtechnik ISST. Um den neuen Anforderungen zu begegnen, spiele Künstliche Intelligenz eine „maßgebliche Rolle“, so Spiekermann. „Denn nur durch den Nutzen von KI-Methoden kann ein hoher Grad an Automatisierung erreicht werden.“
Vorausschauende Wartung für Drehmaschinen
Der Werkzeugmaschinenbauer J.G. Weisser Söhne GmbH & Co. KG setzt auf KI-Modelle, die vorausschauende Wartung von Drehmaschinen ermöglichen. „Bei der vorausschauenden Wartung wird mithilfe von KI prognostiziert, wann ein Wartungsbedarf an einer Maschine entstehen wird, bevor es zu einem Ausfall kommt“, erklärt Dr.-Ing. Robin Hirt, Geschäftsführer und Gründer des Karlsruher Start-ups Prenode GmbH. Das Softwareunternehmen unterstützt Maschinenbauer dabei, Anlagen mit kundenspezifischen KI-basierten Features auszustatten.
Moderne Produktionsmaschinen können sich mithilfe Künstlicher Intelligenz selbst optimieren, sagt Hirt. „Sie nutzen dazu in der Regel so genannte Machine-Learning-Methoden, die es ihnen ermöglichen, Muster und Zusammenhänge in den Produktionsdaten zu erkennen und daraus automatisch Verbesserungen abzuleiten.“
Dezentrale Daten trainieren ein gemeinsames KI-Modell
Da die Daten einer einzelnen Drehmaschine häufig nicht ausreichen, um ein präzises KI-Modell zu trainieren, kommt die Technik des Federated Learning zum Einsatz. Federated Learning ermöglicht es, mit dezentral gespeicherten Daten ein gemeinsames KI-Modell zu trainieren, ohne die Daten direkt auszutauschen. Die individuellen Daten verbleiben also auf den jeweiligen Anlagen und müssen nicht zentral an einem Ort gespeichert werden. Die KI-Modelle schätzen aufgrund aktueller Drehmaschinendaten den gegenwärtigen Zustand der Anlage ab und geben diesen an das Bedienpersonal weiter. Eingesetzt werden dabei neuronale Netze aus dem Bereich des Deep Learnings.
Schlauer Sortier-Assistent von Trumpf
Mit Künstlicher Intelligenz funktioniert auch der Sorting Guide, ein System des Laserspezialisten Trumpf aus Ditzingen, das beim Sortieren produzierter Teile hilft und so die Maschinenauslastung steigern kann. Der Sorting Guide ist ein kamerabasiertes Assistenzsystem und setzt auf Dezentrales Machine Learning. Hauptbestandteile des KI-Systems sind eine hochauflösende Kamera, ein großer Bildschirm, ein Industrie-PC und eine intelligente Software zur Bildverarbeitung.
„Beim Dezentralen Machine Learning werden mehrere Maschinen miteinander vernetzt und bilden gemeinsam ein KI-System“, erklärt Prenode-Geschäftsführer Hirt das Prinzip. Dabei sammeln die Maschinen kontinuierlich lokal Daten über ihre Arbeitsvorgänge. Dann wird für jede Maschine ein KI-Modell entwickelt, das anschließend zentralisiert wird. „In einer zentralen Cloud werden diese Modelle dann fusioniert und wieder in die einzelnen Anlagen zurück übertragen“, so Hirt weiter.
Beim Sorting Guide von Trumpf soll das konkret so funktionieren: Durch vorhandene Stammdaten und selbstlernende Bildverarbeitung erkennt der Sorting Guide entnommene Teile und gibt über den Bildschirm eine Empfehlung zum Absortieren. Die produzierten Teile sind auf dem Bildschirm farbig markiert, beispielsweise nach Kundenauftrag oder folgenden Arbeitsschritten wie zum Beispiel Abkanten, Entgraten, Lackieren oder Versand. Aufwändiges Nachzählen der Teile und manuelle Rückmeldungen oder Begleitpapiere sollen so überflüssig werden. Das Absortieren wird beschleunigt, Fehler werden vermieden, und die Maschine kann schneller weiter produzieren. KI und Fertigung gehen Hand in Hand, da Menschen und Maschinen im industriellen Produktionsumfeld eng zusammenarbeiten müssen.
Zerspanung wird mit Datenanalyse optimiert
Auf Künstliche Intelligenz setzt auch ein neues Verfahren, das den Werkzeugverschleiß in Zerspanungsprozessen, also etwa beim Bohren oder Fräsen, analysiert. Einerseits sollen die teuren Werkzeuge möglichst lange eingesetzt werden. Andererseits ist es wichtig, die Restlebensdauer genau abzuschätzen. Denn ein Werkzeugbruch und ein zerstörtes teures Werkstück oder sogar ein Schaden an der Werkzeugmaschine müssen vermieden werden.
Bislang löst man diesen Zielkonflikt so: Die Werkzeuge werden vorzeitig nach einer erfahrungsbasierten Zahl von Arbeitsgängen ersetzt, um Qualitätsverluste oder gar teure Stillstandzeiten durch Werkzeugbrüche zu vermeiden. Allerdings kostet der Werkzeugaustausch Zeit und Geld, weshalb es sich lohnt, die Wechselzyklen zu optimieren.
Hier kommt die KI ins Spiel. Um den Verschleißzustand zuverlässig vorhersagen und so Zerspanprozesse optimieren zu können, haben Forscher der Technischen Universität Kaiserslautern ein Verfahren entwickelt, das das System anhand von realen Prozess- und Messdaten trainiert. Hierfür werden zunächst prozessbezogene Kenngrößen herangezogen. Dazu zählen unter anderem die beim Zerspanen wirkenden Kräfte, Schwingungen der Maschine sowie der Leistungsbedarf der Maschinenachsen. Ebenso werden Daten aus kontinuierlichen Messungen am Werkzeug und am Werkstück gesammelt. Die größte Herausforderung besteht dann darin, Korrelationen in den gesammelten Daten zu ermitteln.
Suche nach Mustern
Hierfür trainieren die Forscher das KI-gestützte System, das Methoden des Maschinellen Lernens nutzt, um mögliche Muster zu erkennen und daraus Schlüsse zum Verschleißzustand abzuleiten. Darüber hinaus soll es vorhersagen können, mit welchen Prozessparametern Unternehmen bei bestimmten Zerspanprozessen arbeiten müssen, um das Werkzeug für eine angestrebte Nutzungsdauer zuverlässig im Einsatz zu halten. Die Daten, die das System zum Lernen braucht, werden bei fünf Partnerunternehmen erhoben – darunter sind Global Player ebenso wie kleine und mittlere Unternehmen.
Künstliche Intelligenz ist schon ziemlich schlau, aber noch lange nicht perfekt. Zu unterschiedlich sind die einzelnen Prozesse von Anwendungsfall zu Anwendungsfall. Maschinelles Lernen dient daher als Entscheidungsunterstützung für den Werkzeugwechsel. Immer besser werden soll das System durch das so genannte Transfer Learning: Hierbei wird Wissen von verwandten, bereits gelernten Aufgaben genutzt, um Machine-Learning-Modelle schneller für neue, aber verwandte Aufgaben trainieren zu können.
IIP-Ecosphere für niedrigschwelligen Zugang
Für produzierende Unternehmen, denen der Mehrwert von KI noch unklar ist, soll das Projekt IIP-Ecosphere, an dem das Fraunhofer-Institut für Software- und Systemtechnik (Fraunhofer ISST) mitarbeitet, einen niedrigschwelligen Zugang zu herstellerunabhängigen KI-Lösungen für komplexe Problemstellungen in der Produktion bieten. Ziel des Projekts ist es, ein neuartiges Ökosystem aufzubauen, und zwar mit allen Akteuren, die den Einsatz von KI in der Produktion voranbringen, darunter Universitäten und Forschungseinrichtungen, Industrieunternehmen und Anbieter von KI-Lösungen.
Eine Plattform zum Entdecken
Markus Spiekermann, Abteilungsleiter Datenwirtschaft beim Fraunhofer-Institut für Software- und Systemtechnik ISST, erklärt: „Beispielsweise wird im Projekt IIP-Ecosphere der so genannte KI-Lösungskatalog entwickelt. Es handelt sich um eine Plattform zur Entdeckung und Analyse existierender KI-Lösungen für produktionsspezifische Problemstellungen.“ Neben dem einfachen Zugang zu den Informationen bestehender Lösungen biete der Katalog gezielte Filter anhand von Anwendungsfällen und zeige den Mehrwert der Lösungen auf. „Einzelne KI-Anwendungen können dann mithilfe der ebenfalls im Projekt entwickelten Open-Source IIoT-Plattform direkt implementiert werden“, sagt Spiekermann.
Über die EMO Hannover 2023
Vom 18. bis 23. September 2023 präsentieren internationale Hersteller von Produktionstechnologie zur EMO Hannover 2023 smarte Technologien für die gesamte Wertschöpfungskette. Unter dem Motto Innovate Manufacturing zeigt die Weltleitmesse der Produktionstechnologie die gesamte Bandbreite moderner Metallbearbeitungstechnik, die das Herz jeder Industrieproduktion ist. Vorgestellt werden neueste Maschinen plus effiziente technische Lösungen, Produkt begleitende Dienstleistungen, Nachhaltigkeit in der Produktion u.v.m.
Der Schwerpunkt der EMO Hannover liegt bei spanenden und umformenden Werkzeugmaschinen, Fertigungssystemen, Präzisionswerkzeugen, automatisiertem Materialfluss, Computertechnologie, Industrieelektronik und Zubehör. Die Fachbesucher der EMO kommen aus allen wichtigen Industriebranchen, wie Maschinen- und Anlagenbau, Automobilindustrie und ihren Zulieferern, Luft- und Raumfahrttechnik, Feinmechanik und Optik, Schiffbau, Medizintechnik, Werkzeug- und Formenbau, Stahl- und Leichtbau.
Die EMO Hannover ist der wichtigste internationale Treffpunkt für die Industrie weltweit. Zur EMO Hannover 2019 zogen mehr als 2.200 Aussteller aus 47 Ländern fast 120.000 Fachbesucher aus rund 150 Ländern an. EMO ist eine eingetragene Marke des europäischen Werkzeugmaschinenverbands Cecimo. EMO-Veranstalter ist der VDW (Verein Deutscher Werkzeugmaschinenfabriken), Frankfurt am Main, Deutschland.
Quelle: VDW (Verein Deutscher Werkzeugmaschinenfabriken (Autor: Daniel Schauber) / Vorschaubild: Sorting Guide von Trumpf SE + Co. KG